### Stingless bees for research, education, pets and nature ambassadors

Plenary

9B: Breaking the sting barrier: conservation and sustainable use of stingless bees Tim Heard, Sugarbag Bees, Brisbane, and University of Sydney,

### Overview

- Introduction to Stingless bees
- Journey from obscurity to insect ambassadors
- Conservation and sustainable use of stingless bees
- Research to support their sustainable use

# Introduction to Stingless bees

- Apidae: Meliponini
- The "other" group of highly eusocial bees
- C. 500 species globally, 11 in Australia
- Pan-tropical distribution
- Nest typically in hollow trees
- Meliponiculture: stingless bee keeping

Photo: Tobias Smith





Journey from obscurity to insect ambassadors. Then to now.

- Few beekeepers,
- No hive propagation,
- No resources,
- Honeybee manuals,
- Scientific literature





### The two stingless bee symposia

| Tomorrow                                                              | Nadine Chapman                  | Hive movements are changing the genetic structure of the stingless bee (Tetragonula carbonaria)                                             |  |
|-----------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                       | Francisco Garcia Bulle<br>Bueno | A new technique for estimating landscape-level density of an Australian stingless bee (Tetragonula carbonaria                               |  |
| 1ST AUSTRALIAN<br>Native Bee<br>CONFERENCE<br>GOLD COAST • QUEENSLAND | Liam Kendall                    | Stingless bee colony densities within a mass-flowering crop                                                                                 |  |
|                                                                       | Abu Hassan Jalil                | Meliponiculture and Improper Strategies of Stingless Beekeeping in Malaysia                                                                 |  |
|                                                                       | Bronwen Roy                     | Lysinibacillus: A disease of stingless bees?                                                                                                |  |
|                                                                       | Helen Wallace                   | Stingless bees, resin ecology and Cadaghi (Corymbia torelliana): friend or foe?                                                             |  |
|                                                                       | NICK POWEII                     | Hive Design for Australian hative bees                                                                                                      |  |
| 18 of the 32 talks<br>on stingless bees                               | Francois Visser                 | The role of food supplementation in native bee pollination: From a grower / beekeeper's<br>perspective                                      |  |
|                                                                       | Glenn Otto                      | The Bee safe, a secure stand for stingless bee hives                                                                                        |  |
|                                                                       | Dean Haley                      | The use of natural insect repellents to prevent infestation by hive syrphid fly and hive phorid fly                                         |  |
|                                                                       | Samantha Redshaw                | A new method of marking and tracking stingless bees                                                                                         |  |
|                                                                       | Ryan Newis                      | Bees and plant resin: sources, chemistry and bioactivity                                                                                    |  |
|                                                                       | Bryony Willcox                  | Pollinator distribution and efficiency in mango, avocado and macadamia tree crops across three<br>growing regions in Eastern Australia".    |  |
|                                                                       | Brian Cutting                   | Efficiency of Australian native bees for pollination of watermelons                                                                         |  |
|                                                                       | Chris Fuller                    | Managing stingless bees in the commercial orchard environment                                                                               |  |
|                                                                       | Lisa Evans                      | Abundance, distribution, and effect on nut set of managed stingless bees in a macadamia orchard                                             |  |
|                                                                       | Romina Rader                    | Stingless bee and honeybee performance in glasshouses, Abstract coming                                                                      |  |
|                                                                       | Mark Hall                       | Microclimatic conditions in polytunnels used for berry production influence flower visitation by<br>stingless bees (Tetragonula carbonaria) |  |





# <text><text>





# Hives now highly visible





### NOW

- Websites, Facebook pages, YouTube videos
- Local council programs
- Men's sheds
- Indigenous groups
- Businesses









### Proposed for economic development



### Why stingless bees?

- Stingless
- Pets
- Social insect
- Domestication, propagation
- Tetragonula carbonaria
- Honey production
- Pollination
- Tetragonula carbonaria
- Conservation

### Pets

'Biophilia' Humans need a relationship with nature to thrive





### Stingless beekeeping surveys

|                          | 1998                                      | 2010                                      | 2018 |
|--------------------------|-------------------------------------------|-------------------------------------------|------|
| No of beekeepers (n)     | 257                                       | 637                                       | ?    |
| No of nests (n)          | 1425                                      | 4935                                      | ?    |
| Most popular species     | T. carbonaria (69%)<br>T. hockingsi (20%) | T. carbonaria (62%)<br>A. australis (23%) | ?    |
| Reasons for keeping bees | (%)                                       | (%)                                       | ?    |
| Enjoyment                | <b>81</b>                                 | <b>78</b>                                 | ?    |
| Conservation             | 68                                        | 67                                        |      |
| Pollinate bushland       | 27                                        | 29                                        |      |
| Pollinate crops          | 24                                        | 24                                        |      |
| Crops pollination        |                                           | 1                                         |      |
| Honey production         | 8                                         | 11                                        |      |
| Hives sales              | 5                                         | 4                                         |      |
| Education                | 2                                         | 12                                        |      |
| Research                 | 2                                         | 4                                         |      |

# Stingless beekeeping surveys http://www.beesbusiness.com.au/survey.html



### Domestication, propagation







# Tetragonula carbonaria - Subtropical distribution - Excellent species for keeping - Model study organism









### Mating

- Takes place outside nest, on the wing
- Queen only ever does one mating flight
- Males form a congregation in anticipation
- Queen flies through the male congregation
- She mates with one male
- Return to nest and use the stored sperm for rest of her life





### Queen replacement: Emergency queen cells

Emergency queens in *Tetragonula carbonaria* (Smith, 1854) (Hymenoptera: Apidae: Meliponini)

Túlio M Nunes,<sup>1</sup>\* Tim A Heard,<sup>2</sup> Giorgio C Venturieri<sup>2,3</sup> and Benjamin P Oldroyd<sup>1</sup>



Fig. 3. (a) Brood comb of Tetragonula carbonaria in a queentight colony. Note the spiral shape of the brood comb. (b) Brood comf of T. carbonaria 1 week after queen removal showing royal-sized cells ('a') constructed by workers, provisioned with food and capped without egg laying.



Fig. 4. (a) Mature brood comb of Tetragonala carbonaria from a queenless colony showing an emergency queen cell attached b empty auxiliary cell on the top. (b) Queen larva of T. carbonaria adjacent to an empty brood cell.

### Indigenous beekeeping in Central America

Totanacas keep small Scaptotrigona mexicana in clay pots



### Domestication, propagation

**PROPAGATION TECHNIQUES INCLUDING QUEEN TRANSFERS AND BROOD GRAFTS** *Dean Haley, Facilities Supervisor, Luina Bio Pty Ltd, Darra, QLD* 



### Natural enemies and defence mechanisms









### 9B Stingless bee pests and diseases Assoc Prof Robert Spooner Hart

### Habitat, type, diversity and bee health



**9B Resource diversity and bee health** Dr Sara Leonhardt, Research Group





# Conservation and sustainable use of stingless bees

- Conservation Threats
  - Harvesting of wild populations
  - Destruction of colonies by land clearing
  - Anthropogenic movements cause adverse genetic consequences for wild populations
  - Spread of disease
  - Competitive impacts on other species
  - Loss of cryptic species





- 2. Destruction of colonies by land clearing
  - Commercialisation of stingless bees gives them a dollar value and motivates the rescue of colonies under threat.
  - Appreciation of the value of bees as crop pollinators may motivate the preservation of remnant native vegetation.





### Conservation Threats

- 4. Anthropogenic movements or other beekeeping activities lead to spread of disease or pests
  - Most pests are native and widespread so movement of colonies wont make much difference.

### Conservation Threats

- 5. Competitive impacts on other species
  - Is the keeping of stingless bees at high densities to the detriment of other native species that use floral resources?

### Conservation Threats

6. Loss of cryptic species

E.g. *Tetragonula davenporti* is a cryptic species that we think is very restricted in geographic range.

Could beekeeping activities be threatening it?

Could other human activities be leading to its demise?













# Conservation and sustainable use of stingless bees

- Utilisation
  - Honey production
  - Pollination







### Indigenous Australians

Hunters of stingless bee nests



Photo: Alan Yen

|                                                                                                                                                                                                                                                                                                 |                                                | Average± SD                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|
| Honey                                                                                                                                                                                                                                                                                           | Moisture (g/100 g honey)                       | 26.5±0.8                                  |
| - Droduction                                                                                                                                                                                                                                                                                    | Electrical conductivity (mS/cm)                | 1.64 ± 0.12                               |
| <ul> <li>Production</li> <li>1 kg /hive/year</li> </ul>                                                                                                                                                                                                                                         | Ash (g/100 g honey)<br>HMF (mg/kg honey)<br>pH | $0.48 \pm 0.06$<br>1.2 ± 0.6<br>4.0 ± 0.1 |
| <ul><li>Composition</li><li>High water content</li></ul>                                                                                                                                                                                                                                        | Acidity (milliequivalents/kg<br>honey)         | 128.9±23.3                                |
| <ul> <li>High acidity</li> </ul>                                                                                                                                                                                                                                                                | Nitrogen (mg/100 g honey)                      | 202.3±191.2                               |
| <ul> <li>Unusual sugars</li> </ul>                                                                                                                                                                                                                                                              | Diastase (DN)                                  | 0.4±0.5                                   |
| JOURNAL OF MEDICINAL FOOD                                                                                                                                                                                                                                                                       | Invertase (IN)                                 | 5.7±1.5                                   |
| J Med Food 11 (4) 2008; 789-794<br>○ Mary Ann Liebert, Inc. and Korvan Society of Food Science and Nutrition<br>DOI: 10.1089/mil.2007.0724                                                                                                                                                      | Fructose                                       | 24.5±1.9                                  |
|                                                                                                                                                                                                                                                                                                 | Glucose                                        | 17.5±2.8                                  |
| Short Communication                                                                                                                                                                                                                                                                             | Maltose                                        | 20.3±2.9                                  |
| Composition and Antioxidant Activity of Trigona carbonaria Honey from Australia                                                                                                                                                                                                                 | Sucrose                                        | 1.8±0.4                                   |
| Livia Persano Oddo, <sup>1</sup> Tim A. Heard, <sup>2</sup> Antonio Rodríguez-Malaver, <sup>3</sup> Rosa Ana Pérez, <sup>4</sup><br>Miguel Fernández-Muiño, <sup>5</sup> María Teresa Sancho, <sup>5</sup> Giulio Sesta, <sup>1</sup> Lorenzo Lusco, <sup>1</sup> and Patricia Vit <sup>6</sup> | Fructose + glucose                             | 42.0±4.5                                  |





### Sustainable use - pollination

Remnant vegetation provides wild pollinators



### Sustainable use - pollination







11B The pollination contribution of<br/>stingless bees to 5 Australian cropsDr Romina Rader, University of New England, Armidale,<br/>NSW

### Sustainable use - pollination





### Introducing hives of stingless bees to farms



11B **Protecting stingless bees from insecticides on farms** Chris Fuller, Owner and Director, Kin Kin Native Bees, Kin Kin, QLD





### Fighting swarms are caused by an attacking colony attempting to usurp the nest of the defending colony



11B Fighting swarms and tolerance to crowding in Australian stingless bees Dr Ros Gloag, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW



### Summary

- Introduction to Stingless bees
- Journey from obscurity to insect ambassadors
- Conservation and sustainable use of stingless bees
- Research to support their sustainable use



